skip to main content


Search for: All records

Creators/Authors contains: "Ding, Wei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The understanding of chaotic systems is challenging not only for theoretical research but also for many important applications. Chaotic behavior is found in many nonlinear dynamical systems, such as those found in climate dynamics, weather, the stock market, and the space-time dynamics of virus spread. A reliable solution for these systems must handle their complex space-time dynamics and sensitive dependence on initial conditions. We develop a deep learning framework to push the time horizon at which reliable predictions can be made further into the future by better evaluating the consequences of local errors when modeling nonlinear systems. Our approach observes the future trajectories of initial errors at a time horizon to model the evolution of the loss to that point with two major components: 1) a recurrent architecture, Error Trajectory Tracing, that is designed to trace the trajectories of predictive errors through phase space, and 2) a training regime, Horizon Forcing, that pushes the model’s focus out to a predetermined time horizon. We validate our method on classic chaotic systems and real-world time series prediction tasks with chaotic characteristics, and show that our approach outperforms the current state-of-the-art methods. 
    more » « less
  2. Abstract

    This study explores the role that the microstructure plays in determining the macroscopic static response of porous elastic continua and exposes the occurrence of position-dependent nonlocal effects that are strictly correlated to the configuration of the microstructure. Then, a nonlocal continuum theory based on variable-order fractional calculus is developed in order to accurately capture the complex spatially distributed nonlocal response. The remarkable potential of the fractional approach is illustrated by simulating the nonlinear thermoelastic response of porous beams. The performance, evaluated both in terms of accuracy and computational efficiency, is directly contrasted with high-fidelity finite element models that fully resolve the pores’ geometry. Results indicate that the reduced-order representation of the porous microstructure, captured by the synthetic variable-order parameter, offers a robust and accurate representation of the multiscale material architecture that largely outperforms classical approaches based on the concept of average porosity.

     
    more » « less
  3. Learning sentence representations which capture rich semantic meanings has been crucial for many NLP tasks. Pre-trained language models such as BERT have achieved great success in NLP, but sentence embeddings extracted directly from these models do not perform well without fine-tuning. We propose Contrastive Learning of Sentence Representations (CLSR), a novel approach which applies contrastive learning to learn universal sentence representations on top of pre-trained language models. CLSR utilizes semantic similarity of two sentences to construct positive instance for contrastive learning. Semantic information that has been captured by the pre-trained models is kept by getting sentence embeddings from these models with proper pooling strategy. An encoder followed by a linear projection takes these embeddings as inputs and is trained under a contrastive objective. To evaluate the performance of CLSR, we run experiments on a range of pre-trained language models and their variants on a series of Semantic Contextual Similarity tasks. Results show that CLSR gains significant performance improvements over existing SOTA language models. 
    more » « less
  4. null (Ed.)
    Distributed-order fractional calculus (DOFC) is a rapidly emerging branch of the broader area of fractional calculus that has important and far-reaching applications for the modeling of complex systems. DOFC generalizes the intrinsic multiscale nature of constant and variable-order fractional operators opening significant opportunities to model systems whose behavior stems from the complex interplay and superposition of nonlocal and memory effects occurring over a multitude of scales. In recent years, a significant amount of studies focusing on mathematical aspects and real-world applications of DOFC have been produced. However, a systematic review of the available literature and of the state-of-the-art of DOFC as it pertains, specifically, to real-world applications is still lacking. This review article is intended to provide the reader a road map to understand the early development of DOFC and the progressive evolution and application to the modeling of complex real-world problems. The review starts by offering a brief introduction to the mathematics of DOFC, including analytical and numerical methods, and it continues providing an extensive overview of the applications of DOFC to fields like viscoelasticity, transport processes, and control theory that have seen most of the research activity to date. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)